본문 바로가기

Math/Linear algebra

[인프런|1.8] Linear Equations in Linear Algebra | The Matrix of a Linear Transformation

1.8 The Matrix of a Linear Transformation

 

- Standard matrix

 

  - Therem8

  Let T: R^n -> R^m be a linear transformation. Then there exists a unique matrix A such that

  T(x) = Ax for all x in R^n

  In fact, A is the m x n matrix whose j-th column is the vector T(ej),

  where ej is the j-th column of the identity maxtirx in R^n:

     A= [T(e1) ... T(en)]

 

x= lnx = [e1 ... en]x

= x1e1 + ... + xnen

T(x) = Bx

linear transformation

T(ej) = Bej = bj

= [T(e1) ... T(en)]

 

R^n에서 R^m으로 transformation 된 결과는 1개이다

그것을 standard matrix라고 한다.

 

- Geometric Linear Transformation of R^2

 

- Onto

A mapping T: R^n -> R^m is said to be onto R^m if each b in R^m is the image of at least one x in R^n

Does T map R^n onto R^m

=> Does T(x) = b have at leat one solution for each b in R^m?

R^n space에서 R^m으로 보낼 때 T(x) = b 가 되는 해가 최소한 1개 이상 있으면 onto라고 표현한다.

 

 

- One-to-one

A mapping T: R^n -> R^m is said to be one to one if each b in R^m is the image of at most on x in R^n

Is T one-to-one?

Does T(x) = b have either a unique solution or none at all?

 

- Theorem11

Let T : R be a linear transformation

Then T is one-to-one if and only if the equation T(x) = 0

has only trivial solution.

 

T(0) = T(00) = 0T(0) = 0

 

One-to-One 일대일 대응이며 trivial solution이 있을 때에만 해당한다.

 

- Theorem12

Let T : R be a linear transformation and let A be

the standard matrix for T. Then:

T maps R^n onto R^m if and only if the columns of A span R^m

T is one-to-one if and only if the columns of A are linearly independent 

 

두 벡터 [[3], [5], [1]] 과 [[1],[7],[3]]가 서로 multiple표현될 수 없다.

그러므로 서로 independent이다

independent이면 trivial solution

즉 linear transforamtion에서는 one-to-one이다.